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Abstract. Consider infinite random words over a finite alpha-
bet where the letters occur as an i.i.d. sequence according to some
arbitrary distribution on the alphabet. The expectation and the
variance of the waiting time for the first completed h-run of any
letter (i.e., first occurrence of h subsequential equal letters) is com-
puted.

The expected waiting time for the completion of h-runs of j
arbitrary distinct letters is also given.

1. Introduction

In [7], the following paradox is presented: In measuring the regularity
of a die one may use waiting times for sequences of the same side of
certain lengths. For example, if ones throws a regular six-sided die, it
takes 7 throws on average to get a number subsequently twice and 43
throws to get a number three times in succession. Heuristically, one
would expect that a smaller number of throws is needed to get such
sequences with a biased die. This leads to the definition to call one
die more regular than another one if more throws are needed to get
sequences of one side of a certain length. Now the paradox is that
there exist dice—say A and B—where the mean waiting time for two
digits in a row is longer for die A while the mean waiting time for three
digits in a row is longer for die B (an example has been given by Móri,
see [7, p. 62]). The consequence of this paradox is that one cannot use
the mean waiting times for such runs as a (sufficient) criterion for the
definition of regularity of a die (or whatever random sequence of digits
from a finite alphabet).

This paradox gave motivation to calculate first and second moments
of such waiting times for so called h-runs. In particular, the formula
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for the first moment of the waiting time for the first completed h-
run of any digit—which was already given in [7]—is proved without
using the strong law of large numbers or any other limit theorem (see
Theorem 1). Moreover, the variance of the waiting time for the first
completed h-run is presented in the same theorem. We then compute
the waiting time for the completion of h-runs of j different letters in
Theorem 2. In particular, for j = r (the number of possible letters),
we get results about the waiting time for a full collection of runs.

Our fundamental technique is the calculation of generating functions
of such waiting times; our main trick is the combination of two very
useful observations: Firstly, we make use of the very simple but cru-
cial identity (1) (see [1]) which already has been a powerful tool in the
treatment of the coupon collector problem and/or the birthday para-
dox. Secondly, we use the generating function of Smirnov words (see
[2]) to count words with a limited number of repetitions of single letters
using an appropriate substitution.

We conclude the paper in Section 5 with an algorithmic approach
for specific situations.

2. Preliminaries

We consider infinite wordsX1X2 . . . over the alphabetA = {1, . . . , r}
where the random variables Xi are i.i.d. with P{Xi = k} = pk > 0 for
some p1, . . . , pr.

We say that a letter ` ∈ A has an h-run in X1 . . . Xn if there are
h consecutive letters ` in the word X1 . . . Xn, or in other words, if the
word `h = `` . . . ` (with h repetitions) is a factor of the word X1 . . . Xn.

We consider the random variable Bj giving the first position n such
that there exist j of the r letters having an h-run in X1 . . . Xn. This is
a random variable on the infinite product space consisting of all infinite
words endowed with the product measure.

On the other hand, we consider the random variable Yn counting the
number of letters which had an h-run in X1 . . . Xn. This is a random
variable on the finite product space consisting of all words of length n,
again with its product measure.

By construction, we have

(1) P{Yn ≥ j} = P{Bj ≤ n},
cf. [1, Eqn. (6)]. As a consequence, we obtain (cf. [1, Eqn. (7)])

(2) E(Bj) =
∑
n≥0

P{Bj > n} =
∑
n≥0

P{Yn < j} =

j−1∑
q=0

∑
n≥0

P{Yn = q}.

With the generating function

(3) Gj(z) =
∑
n≥0

P{Yn < j}zn,
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this amounts to
E(Bj) = Gj(1).

To compute the variance, we note the simple fact that

E(B2
j ) =

∑
n≥0

n2P{Bj = n} =
∑
n≥0

n2(P{Bj > n− 1} − P{Bj > n})

=
∑
n≥0

(2n+ 1)P{Bj > n} =
∑
n≥0

(2n+ 1)P{Yn < j}

= 2G′j(1) +Gj(1)

where we used (1) and the definition of Gj(z) given in (3). We conclude
that

(4) V(Bj) = E(B2
j )− E(Bj)

2 = 2G′j(1) +Gj(1)−Gj(1)2.

A Smirnov word is defined to be any word which has no consecutive
equal letters. The ordinary generating function of Smirnov words over
the alphabet A is

(5) S(v1, . . . , vr) =
1

1−
r∑

i=1

vi
1 + vi

where vi counts the number of occurrences of the letter i, cf. Flajolet
and Sedgewick [2, Example III.24].

3. Moments of the first h-run

In this section, we study the first occurrence of any h-run. In the
framework of Section 2, this corresponds to the case j = 1 and the
random variable B1.

We prove the following result on the expectation of B1:

Theorem 1. If pi < 1 for 1 ≤ i ≤ r, the expectation and the variance
of the first occurrence of an h-run are

E(B1) =
1

r∑
i=1

1

p−1i + · · ·+ p−hi

(6)

and

V(B1) =

r∑
i=1

(
pi + phi
1− phi

− 2h
phi (1− pi)
(1− phi )2

)
( r∑

i=1

1

p−1i + · · ·+ p−hi

)2
.(7)



4 UTA FREIBERG, CLEMENS HEUBERGER, AND HELMUT PRODINGER

The result (6) on the expectation also appears (without proof) in [7,
p. 62]. Each summand of the numerator of (7) is indeed non-negative,
because this is equivalent to

pi + phi
2

· 1 + pi + · · ·+ ph−1i

h
≥ phi ,

which is true by the inequality between the arithmetic and the geomet-
ric mean, applied to both factors.

Proof of Theorem 1. In the case j = 1, (2) reads

(8) E(B1) =
∑
n≥0

P{Yn = 0}.

Thus we have to determine the probability that a word of length n
does not have any h-run. Such words arise from a Smirnov word by
replacing single letters by runs of length in {1, . . . , h− 1} of the same
letter.

In terms of generating function, this corresponds to replacing each
vi by

piz + · · ·+ (piz)h−1 =
piz − (piz)h

1− piz
.

Here, z marks the length of the word. We obtain

G1(z) =
∑
n≥0

P{Yn = 0}zn = S

(
p1z − (p1z)h

1− p1z
, . . . ,

prz − (prz)h

1− prz

)
=

1

1−
r∑

i=1

piz−(piz)h
1−piz

1 + piz−(piz)h
1−piz

=
1

1−
r∑

i=1

piz − (piz)h

1− (piz)h

.

By (8), we are only interested in z = 1:

E(B1) =
∑
n≥0

P{Yn = 0} = G1(1) =
1

1−
∑r

i=1
pi−phi
1−phi

.

Replacing the summand 1 in the denominator by p1 + · · ·+ pr yields

E(B1) =
1

r∑
i=1

(
pi −

pi − phi
1− phi

) =
1

r∑
i=1

pi − ph+1
i − pi + phi
1− phi

=
1

r∑
i=1

phi (1− pi)
1− phi

=
1

r∑
i=1

1

p−1i + · · ·+ p−hi

.

For the variance, we compute G′1(1) as

G′1(1) = E(B1)
2

r∑
i=1

(pi − hphi )(1− phi ) + (pi − phi )hphi
(1− phi )2
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= E(B1)
2

r∑
i=1

pi − hphi − ph+1
i + hp2hi + hph+1

i − hp2hi
(1− phi )2

= E(B1)
2

r∑
i=1

pi(1− phi )− hphi (1− pi)
(1− phi )2

= E(B1)
2

( r∑
i=1

pi
1− phi

− h
r∑

i=1

phi (1− pi)
(1− phi )2

)
.

By (4), we obtain

V(B1) = 2G′1(1) +G1(1)−G1(1)2

= E(B1)
2

(
−1 + 2

r∑
i=1

pi
1− phi

− 2h
r∑

i=1

phi (1− pi)
(1− phi )2

+
r∑

i=1

phi (1− pi)
1− phi

)

= E(B1)
2

( r∑
i=1

pi + phi
1− phi

− 2h
r∑

i=1

phi (1− pi)
(1− phi )2

)
.

Together with (6), we obtain (7). �

4. Expectation of the first occurrence of h-runs of j
letters

In this section, we consider the first position where j of the letters 1,
. . . , r had an h-run. In the terminology of Section 2, this corresponds
to the random variable Bj.

We prove the following theorem on the expectation of Bj.

Theorem 2. For i ∈ A, let

(9) αi :=
pi − phi
1− pi

, γi :=
pi

1− pi
and let Ai and Γi be the substitution operators mapping the variable vi
to αi and γi, respectively.

Then the expectation of the first occurrence of h-runs of exactly j
letters is

(10) E(Bj) =

( j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai)

)
S(v1, . . . , vr),

where S(v1, . . . , vr) is defined in (5).

For j = r, i.e., the first occurrence of h-runs of all letters, (10) can
be simplified:
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Corollary 3. The expectation of the first occurrence of all h-runs is

(11) E(Br) =

( r∏
i=1

Γi −
r∏

i=1

(Γi − Ai)

)
S(v1, . . . , vr),

where Γi, Ai and S(v1, . . . , vr) are defined in (9) and (5), respectively.

In the case of equidistributed letters, i.e., pi = 1/r for all i, we get
the following simple expression.

Corollary 4. If p1 = · · · = pr = 1/r, then the expectation of the first
occurrence of all h-runs is

E(Br) =
r(rh − 1)

r − 1
Hr,

where Hr denotes the rth harmonic number.

Proof of Theorem 2. As in Section 2, Yn is the number of letters that
have at least one run of length ≥ h within X1 . . . Xn.

Arbitrary words arise from Smirnov words by replacing single letters
by runs of length at least 1 of the same letter. In terms of generating
functions, this corresponds to substituting vi by

piz + · · ·+ (piz)h−1 + ui((piz)h + (piz)h+1 + · · · )

=
piz − (piz)h + ui(piz)h

1− piz
=
piz + (ui − 1)(piz)h

1− piz
=: βi(ui, z).

As previously, z counts the length of the word. The variable ui counts
the number of occurrences of (non-extensible) m-runs of the letter i
with m ≥ h.

We now consider the probability generating function

F (u1, . . . , ur; z) = S(β1(u1, z), . . . , βr(ur, z)).

of all words.
ForM ⊆ A, let En,M be the event that exactly the letters inM have

an h-run in X1 . . . Xn. By definition, we have

(12) {Yn = q} =
⊎

M⊆A
|M |=q

En,M

for q ∈ {0, . . . , r}.
We now compute P(En,M) for someM = {i1, . . . , iq} of cardinality q.

We denote the letters not contained in M by A \M = {s1, . . . , sn−q}.
By construction of the generating function, we have
(13)
P(En,M) = [zn][u0s1 ] · · · [u

0
sn−q

]
∑

mi1
,...,miq≥0

[u
mi1
i1

] · · · [umiq

iq
]F (u1, . . . , ur; z).
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For any power series H(u), we have∑
m≥1

[um]H(u) = H(1)−H(0).

We therefore define the operators ∆i and Zi by ∆iH(ui) = H(1)−H(0)
and ZiH(ui) = H(0). With these notations, (13) reads

(14) P(En,M) = [zn]

(∏
i∈M

∆i

∏
i/∈M

Zi

)
F (u1, . . . , ur; z).

Inserting this and (12) in (2) yields

(15) E(Bj) =
∑
n≥0

[zn]
∑
M⊆A
|M |<j

(∏
i∈M

∆i

∏
i/∈M

Zi

)
F (u1, . . . , ur; z).

Summing over all n ≥ 0 amounts to setting z = 1 as long as all
summands are non-singular at z = 1. As |M | < j, at least one of
the ui is zero, w.l.o.g. u1 = 0. This implies that [zn]F (u1, . . . , ur; z) ≤
[zn]F (0, 1, . . . , 1; z) < ρn for a suitable 0 < ρ < 1 as the word 1h is
forbidden as a factor. Thus F (u1, . . . , ur; z) is regular at z = 1.

We note that βi(1, 1) = γi and βi(0, 1) = αi where γi and αi are
defined in (9). Therefore, for z = 1, the operator ∆i can be written as
Γi − Ai. Similarly, Zi corresponds to Ai.

We have∑
M⊆A
|M |<j

∏
i∈M

(Γi − Ai)
∏
i/∈M

Ai =

j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai).

Combining this with (15) yields (10). �

Proof of Corollary 3. The polynomial
∏r

i=1(yΓi+(1−y)Ai) has degree
r in the variable y. Thus extracting all coefficients but the coefficient
of yr amounts to substituting y = 1 and subtracting the coefficient of
yr, i.e.,

j−1∑
q=0

[yq]
r∏

i=1

(yΓi + (1− y)Ai) =
r∏

i=1

Γi −
r∏

i=1

(Γi − Ai).

Inserting this into (10) yields (11). �

Proof of Corollary 4. Setting pi = 1/r yields

γi =
1
r

1− 1
r

=
1

r − 1
, αi =

1
r
− (1

r
)h

1− 1
r

=
1− 1

rh−1

r − 1
,

γi
1 + γi

=
1

r
,

αi

1 + αi

=
rh−1 − 1

rh − 1
.
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Inserting this in (11) and collecting terms with k occurrences of Ai

yields

E(Br) =
r∑

k=1

(
r

k

)
(−1)k+1 1

1− r−k
r
− k rh−1−1

rh−1

=
r(rh − 1)

r − 1

r∑
k=1

(
r

k

)
(−1)k+1 1

k
=
r(rh − 1)

r − 1
Hr,

where we used the well-known identity

Hr =
r∑

k=1

(
r

k

)
(−1)k+1

k
,

cf. for example [5]. �

Remark 5. Let run lengths h1, . . . , hr be given and consider occurrences
of hi-runs for the letter i. If Bj is the first position n such that there
are exactly j letters which had “their” run in X1 . . . Xn, the results of
Theorems 1 and 2 as well as Corollary 3 remain valid when all phi are
replaced by phi

i .

5. Algorithmic Aspects

For fixed h, the occurrence of an h-run of the variable Xi can easily
be detected by a transducer automaton reading the occurrence proba-
bilities pi and outputting 1 whenever the letter i completes an h run,
see Figure 1 for the case r = 2, h = 3 and i = 2.

2

22

p 2
|0

p1 | 0

p 2
|1

p 1
| 0

p2 | 0

p 1
|0

Figure 1. Transducer detecting 3-runs of the letter 1.

The same can be done for the first occurrence of any h-run, see
Figure 2 for r = 2 and h = 3.

The first occurrence of j runs of length h could also be modelled by
a transducer.

Using the finite state machine package [4] of the SageMath Mathe-
matics Software [6], such transducers can easily be constructed.
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21

22

11

p2 | 0
p 1
| 0

p1 | 0

p 2
| 0

p
2 | 0

p1 | 1

p
1 | 0

p2 | 1

p1
| 0 p

2 | 0

Figure 2. Transducer detecting the first 3-run of any letter.

Accompanying this article, in [3], an extension of SageMath to com-
pute the expectation and the variance of the first occurrence of a 1 in
the output of a transducer is proposed for inclusion into SageMath.

Using this extension, the expectation and the variance of B1 can be
computed for fixed r and h as shown in Table 1.

The results coincide with those obtained in Theorem 1. For more
examples, see the documentation of moments_waiting_time.

For j > 1, we did not compute V(Bj) in general. For fixed r and h,
it can be computed by this algorithmic approach.

Obviously, the SageMath method can be used for computing first
occurrences of everything which is recognisable by a transducer. On the
other hand, explicit results for general r and h such as our Theorems 1
and 2 cannot be obtained by that method.
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