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Abstract. The Cantor distribution is obtained from strings consisting of words of 0
and 1 and appropriately attaching a value to them. The Cantor-Fibonacci distribution
additionally rejects strings with two adjacent letters 1. Probabilities are brought in by
assuming that each admissible string (word) of length m is equally likely; eventually
the limit m →∞ is considered. In this way, one can still deal with discrete objects.

We assume that n random numbers (values of random strings) are drawn inde-
pendently. The interest is in order statistics of these n values: the (average of) the
smallest resp. largest of them. Recursions are obtained which are evaluated asymp-
totically.

Generalisations to the d-smallest resp. d-largest element are also considered.

1. Introduction

The Cantor-Fibonacci distribution has been introduced in [8] as a combination of the
popular Cantor distribution (ternary expansions with digit 1 missing) and an idea that
is immanent in research related to Fibonacci numbers (no two adjacent digits 1).

In this pioneering paper, the moments of the distributions were investigated, both, by
giving a recursion formula for them, as well as an asymptotic expansion. The methods
built on ones used in earlier papers on the (generalized) Cantor-distribution: The paper
by Grabner and the second author [3] investigated the moments, solving open questions
by [7]; the paper by Knopfmacher and the second author [6] dealt with the average of
the minimum element of n elements, drawn from the Cantor distribution, again solving
problems left open by [4].

Similar questions were also addressed in [1], where the interest was instead in just the
Cantor-distribution in general q-ary expansions with missing digits.

Here, we want to go back to the Cantor-Fibonacci distribution, and consider the (av-
erage of the) minimal element, when we draw n (independent) random elements. Like-
wise, we are interested in the maximal element. (In previous research this followed
from the minimum by symmetry, but not here). We go, however, one step further,
and consider general order statistics : We think about the n elements being sorted as
y1 ≤ y2 ≤ · · · ≤ yn. The minimum is then y1, the maximum yn, but we consider more
generally the element yd, the d-th order statistics. We get an exact recursion for the
average of it. We can solve this one asymptotically for a) fixed d, and b) for fixed l,
with d = n− l. Other regimes of d seem to be harder and are left for future research.
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The Cantor distribution with parameter θ, 0 < θ ≤ 1
2

was introduced in [7] by the
random series

θ̄

θ

∑
i≥1

Xiθ
i, (1.1)

where Xi are independent random variables with the distribution

P{Xi = 0} = P{Xi = 1} =
1

2
, (1.2)

and θ̄ = 1−θ. The name of this distribution stems from the fact that for the particular
value θ = 1

3
one deals exactly with the numbers situated in the interval [0, 1] that admit

a ternary expansion consisting only of the digits 0 and 2.
A slightly different point of view is to consider infinite (random) words ω1ω2 . . . over
the alphabet {0, 1} (with the usual concatenation operation) and the mapping value,
defined by

value(ω1ω2 . . . ) :=
θ̄

θ

∑
i≥1

ωiθ
i. (1.3)

Remark. One can easily see that the mapping value is monotonically increasing with
respect to the lexicographic ordering of the set of infinite words ω1ω2 . . . over {0, 1}.

It is straightforward to prove the recursions

value(0ω) = θ · value(ω), value(1ω) = θ̄ + θ · value(ω). (1.4)

In many situations, restrictions imposed on the mentioned words are of relevance.
According to the Fibonacci restriction on words over the alphabet {0, 1}, two letters 1
are not allowed to occur in adjacent positions. In the sequel such words will be referred
to as Fibonacci words. Fibonacci words of given length are enumerated by Fibonacci
numbers, whence the name.

1.1. The Cantor-Fibonacci distribution. Here we recall how this distribution was
introduced in [8]: Let us consider the set of (finite) Fibonacci words F . This set
(language) can be described as

F = {0, 10}∗{ε + 1}, (1.5)

where “∗” denotes arbitrary repetitions and “ε” the empty word. It is easy to verify
the recurrence

F = ε + 1 + {0, 10}F .

The next step is to define a distribution, i.e., to introduce probabilities on the space of
Fibonacci words.

When defining the Cantor distribution, probabilities are simply introduced by assuming
that each of the letters 0 and 1 can appear with probability 1

2
. See [7, 4] for more details.

In the case of the Cantor-Fibonacci distribution we deal with a more complicated
situation. Here the assumption is that all Fm+2 Fibonacci words of length m appear
with the same probability 1/Fm+2, where Fm+2 denotes the (m + 2)-nd Fibonacci
number, since they count Fibonacci words of length n. The idea in the sequel is to
work with finite words, and the let the word length m tend to infinity.
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We will often use the generating function

F (z) =
∑
m≥0

Fm+2z
m =

1 + z

1− z − z2
, (1.6)

where

Fk =
1√
5
(αk − βk), with α =

1 +
√

5

2
and β =

1−
√

5

2
. (1.7)

As it will be shown, the constant α plays an important role in the considerations to
follow.
Remark. Since Fibonacci words form a subset of all infinite words over the alphabet
{0, 1}, the mapping value is monotonically increasing with respect to the lexicographic
ordering of (Fibonacci) words. Moreover, as one can easily check, it is strictly increas-
ing.

1.2. Order statistics for Fibonacci words. As already mentioned, the aim of this
paper is to study several problems of order statistics for Fibonacci words with respect
to the Cantor-Fibonacci distribution.

The problem setting for the average d-th minimum can be described as follows:
Let d ≥ 1 be a fixed integer. For an integer n ≥ d we choose at random (with respect
to the Cantor-Fibonacci distribution) n Fibonacci words and evaluate the function
value for each of them. We choose the string (or one of the strings, if there are more
of them) for which the minimal value is attained. We repeat this procedure for the
other n− 1 words left and choose thus a second string. After repeating this d times we
select the d-th string whose value we call the d-th minimum. For d = 1 one gets the
(usual) minimum among the n strings. For given integers n and d as above we denote
by Mn,d the average value (with respect to the Cantor-Fibonacci distribution) of the
d-th minimum among n random Fibonacci words. We study the asymptotic behaviour
of Mn,d for n →∞ and d fixed.

The problem of the (l + 1)-st maximum can be formulated in the following way:
Let l ≥ 0 be a fixed integer. For n ≥ l + 1 we consider at random n Fibonacci words.
Among these we choose a string with the maximal value and call it the maximum
(or first maximum). We repeat the procedure for the n − 1 strings left, inductively,
and after l + 1 steps we obtain a (l + 1)-th string whose value we call the (l + 1)-st
maximum. For l = 0 one gets the (usual) maximum value among the n Fibonacci
words. We denote by Mn,n−l the average value of the (l +1)-th maximum value among
n random Fibonacci words. We study the asymptotic behaviour of Mn,n−l for n →∞
and l fixed.

Remark. It is clear that Mn,d is for d = 1 the average value of the (usual) minimum
among n random Fibonacci words. Similarly is Mn,n−l for l = 0 the average value of
the maximum value among n random Fibonacci words.

In order to make the material more accessible to the reader we first approach, in
Sections 2 and 3, in detail the most simple cases: the average minimum an (= Mn,1)
and the average maximum bn (= Mn,n). In the last section we pass to the more general
setting in order to study the asymptotic behaviour of Mn,d and Mn,n−l, for d resp. l
fixed and n →∞. These messier computations will then only be sketched.
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2. minimum

2.1. The problem setting. Let Fm denote the set of all Fibonacci words of length
m and by F∞ the set of infinite Fibonacci words. Imagine that we pick at random
(with respect to the Cantor-Fibonacci distribution), independently, n Fibonacci words
from Fm, for n ≥ 1. We apply the function value defined in (1.3) to each of the chosen
words and look for the minimum among these n values. The same can be done with

all random choices of n words of F∞. Let us denote by a
(m)
n the average minimal

value among all possible choices of n Fibonacci words of length m. By taking the limit

an := limm→∞ a
(m)
n we obtain the average minimal value among all choices of n words

of F∞. We are interested in the study of the asymptotic behaviour of an, for n →∞.

The first step is to establish the recurrence relation

a(m)
n = θ

n∑
k=1

(
n

k

)(
Fm+1

Fm+2

)k(
Fm

Fm+2

)n−k

a
(m−1)
k +

(
Fm

Fm+2

)n(
θ̄ + θ2a(m−2)

n

)
.

This recursion is obtained based on the following idea: if among the n random Fibonacci
strings there are any strings having the first digit 0 then the minimum value will
be attained by (at least) one of these strings. In this case the first digit scales the

recursively determined minimum a
(m−1)
n by the factor θ. If all n random Fibonacci

strings start with 10 then the value of the recursively determined minimum a
(m−2)
n is

scaled by the factor θ2 and increased by the value θ̄. These observations easily follow
from (1.4).

Now by taking the limit m →∞ we get:

an = θ
n∑

k=1

(
n

k

)
α−kα−2(n−k)ak + α−2n

(
θ̄ + θ2an

)
, for all integers n ≥ 1. (2.1)

Thus we have proven the following

Theorem 1. The average minimum value among n Fibonacci words with respect to
the Cantor-Fibonacci distribution satisfies the recursion

an = θ

n∑
k=1

(
n

k

)
α−kα−2(n−k)ak + α−2n

(
θ̄ + θ2an

)
, for all integers n ≥ 1.

Remarks. For computational reasons it is convenient to set a0 = 0.
In order to compute the elements an inductively, for n = 1, 2, . . . , one can rewrite the
recursion (2.1):

an =
1

1− α−nθ − α−2nθ2

(
θ

n−1∑
k=1

(
n

k

)
α−kα−2(n−k)ak + α−2nθ̄

)
. (2.2)

2.2. The asymptotics of the average minimum an. The recurrence in (2.1) is
useful for the study of the asymptotic behaviour of the average minimum an, for n →∞.

We introduce the exponential generating function

A(z) =
∑
n≥0

an
zn

n!
.
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From (2.1) we obtain by multiplication by α2n

α2nan = θ

n∑
k=1

(
n

k

)
αkak + θ̄ + θ2an,

implying

A(α2z) = θezA(αz) + θ̄(ez − 1) + θ2A(z).

This yields, by multiplication with e−α2z,

e−α2zA(α2z) = θe−α2zezA(αz) + e−α2z θ̄(ez − 1) + e−α2zθ2A(z)

= θe−αzA(αz) + θ̄(e−αz − e−α2z) + e−α2zθ2A(z).

Thus, for the Poisson transformed function Â(z) := e−zA(z) we have

Â(α2z) = θÂ(αz) + θ̄(e−αz − e−α2z) + e−αzθ2Â(z). (2.3)

As we are looking for the asymptotics of the average minimum an we are going to

study the behaviour of Â(z) for z → ∞. This is based on the fact that an ∼ Â(n),
which can be justified by using the technique of depoissonisation (for details about
depoissonisation we refer to [5, 9]). The idea is to extract the coefficients an from A(z)
using Cauchy’s integral formula and the saddle point method.
Let us rewrite (2.3) as

Â(α2z) = θÂ(αz) + R(z), (2.4)

where R(z) = θ̄(e−αz − e−α2z) + e−αzθ2Â(z) is considered to be an auxiliary function
which we treat as a known function. These techniques have already been used in earlier
papers, see the references given in the introduction.

We compute the Mellin transform Â∗(s) of the function Â(z):

α−2sÂ∗(s) = θα−sÂ∗(s) + R∗(s),

i.e.,

Â∗(s) =
R∗(s)

α−2s − θα−s
.

From here the function Â(z) can be obtained by the Mellin inversion formula (for
details regarding the Mellin transform we refer to [2]),

Â(z) =
1

2πi

∫ c+i∞

c−i∞
Â∗(s) · z−sds =

1

2πi

∫ c+i∞

c−i∞

R∗(s)

α−2s − θα−s
· z−sds,

where 0 < c < − logα θ.
We shift the integral to the right and take the residues with negative sign into account

in order to estimate Â(z). The function under the integral has simple poles at sk =
− logα θ + 2πik

log α
, k ∈ Z. Thus its residues with negative sign in sk, k ∈ Z, are

1

log α
θ−2R∗

(
− logα θ +

2kπi

log α

)
zlogα θ− 2kπi

log α ,

with R∗(s) =
∫∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
zs−1dz.
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In particular, for k = 0 the residue with negative sign is

1

log α
zlogα θ θ−2

∫ ∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
z− logα θ−1dz.

This term plays an essential role in the asymptotic behaviour of the average minimum
an, as the contributions from the other poles only contribute small fluctuations. By
collecting all these residues into a periodic function, one gets the series

log α

θ2

∑
k∈Z

zlogα θ− 2kπi
log α

∫ ∞

0

(
θ̄(e−αz − e−αz) + e−α2zθ2Â(z)

)
z− logα θ+ 2kπi

log α
−1dz.

Putting everything together, we have obtained the following result.

Theorem 2. The average an of the minimum value among n random sequences with
respect to the Cantor-Fibonacci distribution admits the asymptotic estimate

an = Φ(− logα n) · nlogα θ
(
1 +O

( 1

n

))
, (2.5)

for n → ∞, where Φ(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ is given by the expression

1

θ2 log α

∫ ∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
z− logα θ−1dz. (2.6)

Remark. One can compute this integral numerically by taking for Â(z) the first few
terms of its Taylor expansion, which can be found from the recurrence (2.1) for the
numbers an. In order to do this we rewrite (2.6) as

1

log α

(
θ̄2

θ
Γ(− logα θ) + θ2

∑
n≥0

an

n! α2n
Γ(n− logα θ)

)
.

For instance, for θ = 1
3
, this sum evaluates to 3.31661 . . . , and the ratio a300/300logα θ

to 3.27556 . . . .

3. maximum

3.1. The problem setting. We use the notations of the previous section. Again we
pick at random (with respect to the Cantor-Fibonacci distribution), independently, n
Fibonacci words from Fm, for n ≥ 1. We apply the function value defined in (1.3) to
each of the chosen words and look for the maximum among these n values. The same

can be done with all random choices of n words of F∞. Let us denote by b
(m)
n the

average maximal value among all possible choices of n Fibonacci words of length m.

By taking the limit bn := limm→∞ b
(m)
n we obtain the average maximal value among all

choices of n words of F∞. We are interested in the study of the asymptotic behaviour
of bn, for n →∞.

First we find a recurrence relation between bn and bk with 1 ≤ k ≤ n:

b(m)
n =

n∑
k=1

(
n

k

)(
Fm

Fm+2

)k(
Fm+1

Fm+2

)n−k(
θ̄ + θ2b

(m−2)
k

)
+

(
Fm+1

Fm+2

)n

θb(m−1)
n .

One can deduce the above relation proceeding analogously as in the study of the min-
imum: If among the n random Fibonacci strings there are any strings starting with
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1, i.e., with 10, then the maximum value will be attained for (at least) one of these

strings and the value of the recursively determined maximum b
(m−2)
n is scaled by the

factor θ2 and increased by θ̄ . In the complementary case the value of the recursively

determined maximum b
(m−1)
n is scaled by the factor θ. By taking the limit for m →∞

we obtain the relation

bn =
n∑

k=1

(
n

k

)
α−2kα−(n−k)

(
θ̄ + θ2bk

)
+ α−nθbn, (3.1)

and by rearrangement of terms we get the following

Theorem 3. The average maximum value among n Fibonacci words with respect to
the Cantor-Fibonacci distribution satisfies the recursion

bn = θ̄
(
1− 1

αn

)
+ θ2

n∑
k=1

(
n

k

)
α−2kα−(n−k)bk + α−nθbn, (3.2)

for all integers n ≥ 1.

Remarks. It is convenient to set b0 := 1
1+θ

.
In order to compute the elements bn, for n = 1, 2, . . . , one can rewrite the above
recursion as

bn =
1

1− α−2nθ2 − α−nθ

(
θ̄
(
1− 1

αn

)
+ θ2

n−1∑
k=1

(
n

k

)
α−2kα−(n−k)bk

)
, n ≥ 1. (3.3)

3.2. The asymptotics of the average maximum bn. Our goal is now to study
the asymptotic behaviour of bn, for n → ∞. We proceed analogously to the previous
section, but here R and Φ denote new functions, related to the behaviour of the average
maximum.

Since we expect bn to approach value(0.10101010 . . . ) = 1
1+θ

, we set bn := 1
1+θ

− cn for
all integers n ≥ 0 and study the behaviour of cn in order to get the desired information
about bn.

We look for a recurrence relation for cn. The relation (3.3) becomes

1

1 + θ
− cn = θ

(
1− 1

αn

)
+ α−nθ2

n∑
k=1

(
n

k

)
α−k

( 1

1 + θ
− ck

)
+ α−nθ

( 1

1 + θ
− cn

)
,

which leads us to

cn = −θ

(
1− 1

αn

)
− α−n θ2

1 + θ

n∑
k=1

(
n

k

)
α−k

+ α−n θ2

n∑
k=1

(
n

k

)
α−kck −

θ

1 + θ
α−n +

1

1 + θ
+ α−nθcn,

and herefrom

cn = α−n
(
θ̄ − θ

1 + θ

)
− θ +

1

1 + θ
− α−n θ2

1 + θ

((
1 +

1

α

)n

− 1

)
+ α−nθ2

n∑
k=1

(
n

k

)
α−kck + α−nθcn,
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which finally leads us to

αncn =
θ̄

1 + θ
+ θ2

n∑
k=1

(
n

k

)
α−kck + θcn. (3.4)

Let us now define the exponential generating function

C(z) =
∑
n≥0

cn
zn

n!
.

From (3.4) one can immediately deduce

C(αz) =
θ̄

1 + θ
(ez − 1) + θ2 ezC

( z

α

)
+ θC(z).

This implies that for the Poisson transformed function Ĉ(z) = C(z) · e−z we have

Ĉ(αz) =
θ̄

1 + θ
(e
−z
α − e−αz) + θ2Ĉ

( z

α

)
+ θe−

z
α Ĉ(z).

By the substitution z := z/α we can rewrite this as

Ĉ(z) =
θ̄

1 + θ

(
e−

z
α2 − e−z

)
+ θ2Ĉ

( z

α2

)
+ θe−

z
α2 Ĉ

( z

α

)
,

i.e.,

Ĉ(z) = θ2Ĉ
( z

α2

)
+ R(z), (3.5)

where R(z) = θ̄
1+θ

(e−
z

α2 − e−z) + θ e−
z

α2 Ĉ
(

z
α

)
is considered to be an auxiliary function

which we treat as a known function. Now we compute the Mellin transform Ĉ∗(s) of

the function Ĉ(z),

Ĉ∗(s) = θ2α2sĈ∗(s) + R∗(s) =
R∗(s)

1− θ2 · α2s
. (3.6)

At this stage the function Ĉ(z) can be obtained by applying the Mellin inversion
formula

Ĉ(z) =
1

2πi

∫ c+i∞

c−i∞
Ĉ∗(s) · z−sds =

1

2πi

∫ c+i∞

c−i∞

R∗(s)

1− θ2 · α2s
· z−sds, (3.7)

where 0 < c < − logα θ.
Now we shift the above integral to the right and take the residues with negative sign

in order to estimate Ĉ(z) in (3.7). The function under the integral has simple poles at
sk = − logα θ + 2kπi

log α2 , k ∈ Z. For these the residues with negative sign are

1

log α2
R∗

(
− logα θ +

2kπi

log α2

)
z

logα θ− 2kπi
log α2 ,

where R∗(s) =
∫∞

0

(
θ̄

1+θ
(e
−z

α2 − e−z) + θe−
z

α2 Ĉ
(

z
α

))
zs−1dz.

For k = 0 the residue with negative sign is

1

log α2
zlogα θ

∫ ∞

0

( θ̄

1 + θ
(e−

z
α2 − e−z) + θe−

z
α2 Ĉ

( z

α

))
z− logα θ−1dz.
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This term constitutes the main contribution to the asymptotic behaviour of cn. We
collect all mentioned residues into a periodic function and obtain the series

1

log α2

∑
k∈Z

z
logα θ− 2kπi

log α2

∫ ∞

0

( θ̄

1 + θ
(e−

z
α2 − e−z) + θe−

z
α2 Ĉ

( z

α

))
z
− logα θ+ 2kπi

log α2−1
dz.

Herefrom we get for bn = 1
1+θ

− cn the following

Theorem 4. The average bn of the maximum value among n random sequences with
respect to the Cantor-Fibonacci distribution admits the asymptotic estimate

bn =
1

1 + θ
− Φ(− logα2 n) · nlogα θ

(
1 +O

( 1

n

))
, (3.8)

for n → ∞, where Φ(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ is given by the expression

1

log α2

∫ ∞

0

( θ̄

1 + θ
(e−

z
α2 − e−z) + θe−

z
α2 Ĉ

( z

α

))
z− logα θ−1dz. (3.9)

Remark. One can compute this integral numerically by taking for Ĉ(z) the first few
terms of its Taylor expansion, which can be found by taking into account the relation
cn = 1

1+θ
− bn, for n ≥ 0 and the recurrence (3.2) for bn, for n ≥ 1. For this purpose

we can rewrite the expression in (3.9) as

θ̄2

θ2 log α2
Γ(− logα θ) +

θ

log α2

∑
n≥0

cn

n! αn
Γ(n− logα θ).

Again, for θ = 1
3
, this series evaluates to 5.35114 . . . , and c300/300logα θ to 5.27105 . . . .

4. Generalisations

4.1. The d-th minimum, d ≥ 1. Let d ≥ 1 be a fixed integer. For n ≥ d let Mn,d be
the average value of the d-smallest element. In the notation of the previous sections,
an = Mn,1 and bn = Mn,n.

Here is the general recursion:

Theorem 5. Let d ≥ 1 be a fixed integer. The average value of the d-th minimum
among n random Fibonacci words with respect to the Cantor-Fibonacci distribution
satisfies the recursion

Mn,d = θ

n∑
k=d

(
n

k

)
α−kα−2(n−k)Mk,d +

d−1∑
k=0

(
n

k

)
α−kα−2(n−k)

(
θ̄ + θ2Mn−k,d−k

)
, (4.1)

for all integers n ≥ d.

Our aim is now to pass, analogously to the previous sections, from the above recurrence
to an equation in terms of generating functions.
We define the exponential generating function

Ad(z) :=
∑
n≥d

Mn,d
zn

n!
,
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for any fixed integer d ≥ 1.
By multiplying (4.1) by α2n zn

n!
and then summing up for n ≥ d we obtain

Ad(α
2z) = θezAd(αz) + Kd(z),

where

Kd(z) :=
∑
n≥d

zn

n!

d−1∑
k=0

(
n

k

)
αk

(
θ̄ + θ2Mn−k,d−k

)
.

This implies

e−α2zAd(α
2z) = θe(1−α2)zAd(αz) + e−α2zKd(z),

i.e., for the Poisson transformed function Âd(z) := e−zAd(z),

Âd(α
2z) = θÂd(αz) + Rd(z), (4.2)

with Rd(z) = e−α2zKd(z).

Remark. One can easily check that, as expected, for d = 1 the function Rd(z)
coincides with R(z) occurring in Section 2.
It is easy to see that from here on the computations leading to the asymptotic behav-
iour of Mn,d follow exactly those shown in Section 2, whereas in all formulæ containing
R(z) we will replace this by the function Rd(z) defined above. (We leave these details
to the reader as a straightforward exercise.) Thus we obtain the following result.

Theorem 6. The average Mn,d of the d-th minimum value among n random sequences
with respect to the Cantor-Fibonacci distribution admits the asymptotic estimate

Mn,d = Φd(− logα n) · nlogα θ
(
1 +O

( 1

n

))
, (4.3)

for n → ∞, where Φd(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φd is given by the expression

1

θ2 log α

∫ ∞

0

(
e−α2z

∑
n≥d

zn

n!

d−1∑
k=0

(
n

k

)
αk

(
θ̄ + θ2Mn−k,d−k

))
z− logα θ−1dz. (4.4)

4.2. The (l + 1)-st maximum Mn,n−l, l ≥ 0. Rewriting (4.1) in terms of Mn,n−l, we
get

Theorem 7. Let l ≥ 0 be a fixed integer. The average value Mn,n−l of the (l + 1)-
st maximum among n random Fibonacci words with respect to the Cantor-Fibonacci
distribution satisfies the recursion

Mn,n−l =
n∑

k=l+1

(
n

k

)
α−2kα−(n−k)(θ̄+θ2Mk,k−l)+θ

l∑
k=0

(
n

k

)
α−2kα−(n−k)Mn−k,n−l, (4.5)

for all n ≥ l + 1.

As in the previous sections, we use the recursion (4.5) in order to deduce an equation
for the generating functions.
Since we expect Mn,n−l to approach value(0.10101010 . . . ) = 1

1+θ
for n → ∞, we set,

analogously to Section 3, Mn,n−l := 1
1+θ

−Pn,n−l for all integers n ≥ l +1 and study the
behaviour of Pn,n−l for n →∞.
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With the above substitution (4.5) becomes

1

1 + θ
− Pn,n−l =

n∑
k=l+1

(
n

k

)
α−2kα−(n−k)

(
θ̄ + θ2

( 1

1 + θ
− Pk,k−l

))

+ θ

l∑
k=0

(
n

k

)
α−2kα−(n−k)

( 1

1 + θ
− Pn−k,n−l

)
,

for all integers n ≥ l + 1.
We rearrange some terms, multiply by αn zn

n!
and sum up for n ≥ l + 1 and finally

introduce the exponential generating function

Cl(z) =
∑

n≥l+1

Pn,n−l
zn

n!

to obtain

Cl(αz) = θ2ezCl(
z

l
) + Hl(z),

where

Hl(z) =
1

1 + θ

∑
n≥l+1

αnzn

n!

+
∑

n≥l+1

(
θ

l∑
k=0

(
n

k

)
α−kPn−k,n−l −

θ

1 + θ

l∑
k=0

(
n

k

)
α−k − 1

1 + θ

n∑
k=l+1

(
n

k

)
α−k

)
zn

n!

=
∑

n≥l+1

zn

n!

l∑
k=0

(
n

k

)
α−k

(
θPn−k,n−l +

θ̄

1 + θ

)
.

Thus for the Poisson transformed function Ĉl(z) = C(z) · e−z we deduce

Ĉl(αz) = θ2Ĉl(
z

α2
) + e−αzHl(z), (4.6)

Herefrom we obtain, by substituting z = z/α,

Ĉl(z) = θ2Ĉl(
z

α2
) + Ql(z), (4.7)

where Ql(z) = e−zHl(
z
α
).

Remark. As one would expect, for l = 0, Ql(z) coincides with the auxiliary func-
tion R(z) that occurs in Section 3.
As in the generalisation of the average minimum, from here on the computations lead-
ing to the asymptotic behaviour of Mn,n−l follow exactly those from the study of the
average maximum bn in Section 3, whereas in all formulæ in Section 3 containing R(z)
we will replace this by the function Ql(z) defined above. Thus one gets the proof of
the following theorem:
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Theorem 8. The average Mn,n−l of the (l + 1)-st maximum value among n random
sequences with respect to the Cantor-Fibonacci distribution admits the asymptotic esti-
mate

Mn,n−l =
1

1 + θ
− Φl(− logα2 n) · nlogα θ

(
1 +O

( 1

n

))
, (4.8)

for n → ∞, where Φl(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φl is given by the expression

1

log α2

∫ ∞

0

(
e−z

∑
n≥l+1

zn

n!αn

l∑
k=0

(
n

k

)
α−k

(
θPn−k,n−l +

θ̄

1 + θ

))
z− logα θ−1dz. (4.9)

Of course, for numerical purposes, the constants in (4.4) and in (4.9) could be expressed
as a series involving Gamma functions.
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