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Abstract. We discuss tilings of a grid (of size n × 2) with dominoes of size 2 × 1.
Parameters that might be called “longest run” are investigated, in terms of generating
functions and also asymptotically. Extensions are also mentioned.

1. Introduction

Donald Knuth [3] included tilings of an n×2-rectangle using 2×1-sized tiles (“domi-
noes”) as an introductory example of the use of generating functions. If Tn is the
number of these tilings, then Tn = Tn−1 +Tn−2, since we have two choices to start: one
vertical domino, leaving an (n − 1) × 2-rectangle, or two horizontal dominos, leaving
an (n−2)×2-rectangle. Since T0 = 1 and T1 = 1, this leads to Tn = Fn+1 (a Fibonacci
number).

Here is one particular tiling of a 20× 2-rectangle:

Denoting T the family (=set) of all tiled n × 2-rectangles, for n ≥ 0, then we can
write a symbolic equation:

T = + T + T

With the generating function

T (z) :=
∑
n≥0

Tnz
n,

the symbolic equation translates directly into

T (z) = 1 + zT (z) + z2T (z) =
1

1− z − z2
.

This equation is simple enough that, with partial fraction decomposition, one finds
an explicit form

Tn =
1√
5

[(
1 +
√

5

2

)n+1

−
(

1−
√

5

2

)n+1]
.

The number

α :=
1 +
√

5

2
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is called the golden ratio; it is one of the most important constants in mathematics. In
terms of asympotics it is dominating:

Tn ∼
1√
5

(
1 +
√

5

2

)n+1

.

If one cannot resort to an explicit expression as above, one looks at the dominating
singularity and writes

T (z) ∼ C

1− αz
as z → 1

α
.

The constant C may be computed as

C = lim
z→ 1

α

1− αz
1− z − z2

=
α√
5
.

In this paper, we are interested in the (consecutive) sequence of horizontal dominoes
in a tiling. We are looking for the longest substructure of the type in the figure.

We will indicate in Section 2 how the expected value of this parameter may be
computed. Then, in Section 3, we change our setting to tilings of n × 3 rectangles.
Things become more involved, but it is highly instructive to see how one has to deal
with the difficulties. For more material of a similar type we refer to [8].

2. The longest horizontal run in tilings of n× 2-rectangles

As the first step of our analysis, we decompose a tiled rectangle according to (maxi-
mal) runs of horizontal dominoes. We indicate this for the example from the introduc-
tion: We see here runs of 3, 1, and 2 (stacked) horizontal dominoes. So our parameter is

3 for this example. Various runs of length 0 are not indicated. Based on this (unique!)
decomposition, we introduce T <h, the family of tiled dominoes where the (maximal)
run parameter is < h, we find

T <h =
<h
(

<h
)∗
.

For completeness, we mention that the ‘∗’ operator (Kleene’s star in language theory)
produces sequences. If A is a set, then A∗ = A0 ∪ A1 ∪ A2 ∪ · · · , i.e., all sequences
that can be formed from elements of A. This operation is also useful when one deals
with generating functions. If f(z) is the generating function associated to A, so that
the coefficient of zn (written as [zn]f(z)) counts the number of elements of size n in
A, then 1

1−f(z) is the generating function associated to A∗. For general background we

would like to mention the book [2].
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Here,

<h
=

h−1⋃
i=0

i
.

The lefthand side describes repetitions of with at most h−1 elements; the righthand
side splits the repetitions into the various possibilities from i = 0, 1, . . . , h−1 . In terms
of generating functions, the last expression translates into

1 + z2 + z4 + · · ·+ z2(h−1) =
1− z2h

1− z2
.

Consequently, we get

T<h(z) =
1− z2h

1− z2
1

1− z(1−z2h)
1−z2

=
1− z2h

1− z − z2 + z2h+1
.

One can see from this that, as h → ∞, which means no more restrictions on the run
lengths, we find again the generating function

T (z) =
1

1− z − z2
.

Further,

T≥h(z) := T (z)− T<h(z) =
1

1− z − z2
− 1− z2h

1− z − z2 + z2h+1

=
1− z2

1− z − z2
z2h

1− z − z2 + z2h+1
.

There is a dominant root ρh of 1 − z − z2 + z2h+1, which is close to 1/α. So we set
ρh := 1/α + εh and continue

1− 1

α
− εh −

1

α2
− 2εh

α
+ α−2h−1 ∼ 0,

or
εh ∼

√
5α−2h−1.

We write

1− z − z2 + z2h+1 ∼
(

1− z

ρh

)
C,

and find

C = lim
z→ρh

1− z − z2 + z2h+1

1− z
ρh

∼
√

5

α
.

Now we can read off coefficients:

[zn]T≥h(z) ∼ αn+1

√
5
− [zn]

α√
5

1

1− z/ρh

=
αn+1

√
5
− α√

5
ρ−nh

∼ αn+1

√
5
− α√

5

( 1

α
+
√

5α−2h−1
)−n
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=
αn+1

√
5
− αn+1

√
5

(
1 +
√

5α−2h
)−n

∼ αn+1

√
5
− αn+1

√
5

(
1−
√

5α−2h
)n

∼ αn+1

√
5
− αn+1

√
5
e−
√
5n/α2h

.

Normalization leads to
[zn]T≥h(z)

Tn
∼ 1− e−

√
5n/α2h

.

In order to compute the average value of our parameter, one has to sum this:∑
h≥1

(
1− e−

√
5n/α2h

)
.

It is very well understood how to get asymptotics for

f(x) :=
∑
h≥1

(
1− e−x/α2h

)
as x→∞, see [1]. One computes the Mellin transform

f ∗(s) =
∑
h≥1

α2hs · Γ(s) = − α2s

1− α2s
Γ(s),

valid in 〈−1, 0〉 (the fundamental strip). Then one employs the inversion formula

f(x) = − 1

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

α2s

1− α2s
Γ(s)x−sds,

shifts the line of integration to the right and takes the residues (with a negative sign)
into account. The contribution from the pole at s = 0 is

1

2
logα x+

γ

2 logα
− 1

2
.

There is also a contribution coming from the simple poles at s = kπi
logα

:

− 1

2 logα

∑
k 6=0

Γ
( kπi

logα

)
e−kπi·logα x.

This is a periodic function of small amplitude. Such functions occur frequently when
one analyses run statistics, see [8]. Altogether we found for the average of our parameter
the asymptotic formula

1

2
logα n+

1

4
logα 5 +

γ

2 logα
− 1

2
− δ(
√

5n),

with

δ(x) := − 1

2 logα

∑
k 6=0

Γ
( kπi

logα

)
e−kπix.
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Let us emphasize that the paper [8] has many similar results, and concrete error
terms and estimates are worked out. Here, for the benefit of the reader, we suppress
technical details and just stick to the main ideas.

3. Tilings of n× 3-rectangles

Let us start with an example of a 20× 3-rectangle:

It decomposes in a natural way as follows:

Figure 1. Decomposition into blocks

The individual (maximal) blocks are of 3 types, as indicated in the figure:

Figure 2. First type

Figure 3. Second type

Figure 4. Third type
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Again, we will look at

Figure 5. Maximal sequence of horizontal dominoes present (2 layers)

Let the three types with a sequence of exactly i horizontal (stacked) dominoes be
denoted by F i, G i, H i, then the family of dominoes with our run parameter < h can
be described by

T <h =

(h−1⋃
i=0

F i

)[(h−1⋃
i=0

G i ∪
h−1⋃
i=0

H i

)(h−1⋃
i=0

F i

)]∗
.

In terms of generating functions (the variable z marks the length of the domino), we
have the following:

h−1⋃
i=0

F i −→ 1 + z2 + · · ·+ z2(h−1) =
1− z2h

1− z2
,

h−1⋃
i=0

G i −→ z2 + · · ·+ z2h =
z2(1− z2h)

1− z2

and
h−1⋃
i=0

H i −→ z2 + · · ·+ z2h =
z2(1− z2h)

1− z2
.

Consequently

T<h(z) =
1− z2h

1− z2
1

1− 2
z2(1− z2h)

1− z2
1− z2h

1− z2

=
(1− z2)(1− z2h)

1− 4z2 + z4 + 4z2h+2 − 2z4h+2
.

In the limit h→∞ (no restrictions), we find

T (z) =
1− z2

1− 4z2 + z4
,

which was already derived in [3] using a different method. These functions only depend
on z2, which is clear, since a tiled n× 3-rectangle is only possible for even n. Thus we
set w := z2 and work with

R<h(w) =
(1− w)(1− wh)

1− 4w + w2 + 4wh+1 − 2w2h+1

and

R(w) =
1− w

1− 4w + w2
.
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There is a dominant root at w = 1/ρ with ρ = 2 +
√

3, and

R(w) ∼ 3−
√

3

6

1

1− ρz
,

and so

[wn]R(w) ∼ 3−
√

3

6
ρn.

There is a dominant root ωh = 1
ρ

+ εh of

1− 4w + w2 + 4wh+1 − 2w2h+1.

One application of bootstrapping results in

εh =
2√

3ρh+1
.

From a historical point of view, it is interesting to point out that this procedure ap-
peared for the first time in [6].

A computation that is analogous to the one in the previous section yields

[wn]T≥h(z) ∼ 3−
√

3

6
ρn − 3−

√
3

6
ω−n

∼ 3−
√

3

6
ρn − 3−

√
3

6

(1

ρ
+ εh

)−n
=

3−
√

3

6
ρn − 3−

√
3

6
ρn
(

1 +
2√
3ρh

)−n
∼ 3−

√
3

6
ρn − 3−

√
3

6
ρn
(

1− 2√
3ρh

)n
.

Normalization leads to
[wn]T≥h(z)

[wn]T (z)
∼ 1− e−

2n√
3ρh .

To compute the average, we need to evaluate∑
h≥1

(
1− e−x/ρh

)
,

with x = 2n/
√

3. The asymptotic evaluation is as before:

logρ n+ logρ 2− 1

2
logρ 3 +

γ

log ρ
− 1

2
− 1

log ρ

∑
k 6=0

Γ
(2kπi

log ρ

)
e−2πik·logρ(2n/

√
3 ).

4. The longest vertical run in tilings of n× 2-rectangles

For completeness, we briefly discuss how one can attack the parameter “longest
vertical run.”

We introduce T <h, the family of tiled dominoes where the (maximal) run parameter
is < h, we find

T <h =
<h
(

<h
)∗
.
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In terms of generating functions, this means

T<h(z) =
1− zh

1− z − z2 + zh+2
.

We set again ρh = 1/α + εh, and find

εh ∼
1√
5

1

αh+2
.

Further,
[zn]T≥h(z)

Tn
∼ 1− e

√
5n/αh+1

.

The expected value is to be evaluated as∑
h≥1

(
1− e−x/αk

)
,

with x =
√
5
α
n. The asymptotic evaluation is

logα n+
1

2
logα 5 +

γ

logα
− 3

2
− 1

α

∑
k 6=0

Γ
( 2kπi

logα

)
e−2πik·logα(n

√
5/α);

n refers to the length of the tiled rectangle.
The case of an n × 3-rectangle and runs of vertical tiles can also be done, but is a

bit more elaborate. It leads to a similar type of result.

5. Conclusion

We have demonstrated how to deal with runlength parameters: First, symbolic equa-
tions lead to explicit forms of the associated generating functions. Then, one identifies
the dominant singularity and finds an approximate expression for the coefficients. The
average value that one wants to compute is then asymptotically described by a series.
To work out asymptotics for this sum, the Mellin transform [1, 2] is used. This se-
ries of operations works also in other contexts. A few references for further reading
are [4, 5, 7].
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