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Abstract. We revisit the pills problem proposed by Knuth and McCarthy. In a
bottle there are m large pills and n small pills. The large pill is equivalent to two
small pills. Every day a person chooses a pill at random. If a small pill is chosen, it
is eaten up, if a large pill is chosen it is broken into two halves, one half is eaten and
the other half which is now considered to be a small pill is returned to the bottle.
How many pills are left, on average, when the last large pill has disappeared? We
show how to compute the moments, in particular the variance, and then generalize
the problem in various ways.

1. Introduction

The following problem was proposed by Donald E. Knuth and John McCarthy in [4,
p. 264]; the solution appeared in [1, p. 684].

“In a bottle there are m large pills and n small pills. The large pill is equivalent to
two small pills. Every day a person chooses a pill at random. If a small pill is chosen,
it is eaten up, if a large pill is chosen it is broken into two halves, one half is eaten and
the other half which is now considered to be a small pill is returned to the bottle.”

The proposed problem was to find the expected number of small pills remaining
when there are no more large pills left in the bottle.

We will revisit this problem by showing how one can derive all the moments, at
least in principle. We compute them up to the third moment; in particular we get the
variance.

Then we generalize the problem in various ways: We assume two types of pills, but
this time the large one is equivalent to p of the small ones. When it is chosen, one unit
is eaten, and the remaining p− 1 small ones are put back into the bottle.

We also consider the model of three types of pills. The large ones are equivalent to
3 small ones, and the middle ones to 2 small ones. The simpler model is as follows:
when the large one is chosen, one unit is eaten, and the rest goes back to the bottle in
the form of 2 small units. The more complicated model is the one where what remains
from a large pill goes back into the bottle in the form of a middle sized pill.

The methodology is as follows: Recursions are set up that describe the process.
Often, the solutions are found by inspection. For this, computer software is available
in the form of Gfun, a Maple package described in [5]. Once the answers are known,
the proofs are a routine verification. One just has to check that the recursion and the
initial conditions are satisfied.
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However, this approach has its limitations when the problems become too large, and
then the solutions had to be found in a different way. By inspection again, one can
make a meaningful ansatz and compute the coefficients involved in it by unwinding
the recursions which they satisfy.

2. The original problem revisited

It is meaningful to introduce generating functions fm,n(u) where the coefficient of uk

is the probability that k small pills are left in the bottle after the last large pill has
been selected. The following recursion is self-explanatory:

fm,n(u) =
m

m + n
fm−1,n+1(u) +

n

m + n
fm,n−1(u) for m ≥ 1 and f0,n(u) = un.

Quantities with negative indices are defined to be zero.
We cannot hope to solve this system explicitly but it can be used to compute mo-

ments by differentiations with respect to u, and then setting u = 1. Since the parameter
u appears explicitly only in the initial conditions, we can compute the sth moment by
using the same recursion and replacing the initial conditions by f0,n = ns.

Let us first revisit the expected value em,n := f ′m,n(1).

em,n =
m

m + n
em−1,n+1 +

n

m + n
em,n−1 for m ≥ 1 and e0,n = n.

One can see quickly that em,n =
n

m + 1
+ Hm, where Hm is the harmonic number

defined as

Hm = 1 +
1

2
+

1

3
+ · · ·+ 1

m
.

A general reference for the harmonic numbers and many of their properties is [2]. As
mentioned before, to check that this is indeed the solution is a routine task.

Now let us move to the second moments which we denote by e
(2)
m,n. We have the

recursion

e(2)
m,n =

m

m + n
e
(2)
m−1,n+1 +

n

m + n
e
(2)
m,n−1 and e

(2)
0,n = n2.

If one computes a few of these values one sees some patterns evolving. For fixed m,

the numbers e
(2)
m,n are given by a quadratic polynomial in n. Maple’s interpolate

command is useful to find them. Here is a list of the first few instances:

e
(2)
0,n = n2,

e
(2)
1,n =

1

3
n2 +

7

6
n + 1,

e
(2)
2,n =

1

6
n2 +

23

18
n +

5

2
,

e
(2)
3,n =

1

10
n2 +

37

30
n +

71

18
,

e
(2)
4,n =

1

15
n2 +

29

25
n +

95

18
,

e
(2)
5,n =

1

21
n2 +

38

35
n +

2927

450
, &c.
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The coefficients of n2 are clearly given by

2

(m + 1)(m + 2)
.

It is not so obvious to find the general law of the coefficients of n. However, here,
Gfun is helpful. We form the list

L =

[
7

6
,
23

18
,
37

30
,
29

25
,
38

35
,
997

980
,
4819

5040
,
5113

5670
,
59141

69300
,
30883

38115
, . . .

]

of these coefficients. Using a few intermediate steps that we are not going to describe
here, we find a differential equation for the generating function f(z) of the coefficients
of L:

0 = (180z3 − 256z2 + 92z)f(z) + (360z4 − 680z3 + 412z2 − 84z)f ′(z)

+ (150z5 − 332z4 + 238z3 − 56z2)f ′′(z) +
(
15z6 − 37z5 + 29z4 − 7z3

)
f ′′′(z),

f(0) =
7

6
, f ′(0) =

23

18
, f ′′(0) =

37

15
.

The solution is

f(z) =
2 log2(1− z)

z2
− 2 log(1− z)

z3
+

5 log(1− z)

z2
+

4 dilog(1− z)

z2
− 2

z2
.

Let us recall the dilog function:

dilog(1− z) =
∑
n≥1

zn

n2
.

As a check, we compute the series expansion

f(z) =
7

6
+

23

18
z +

37

30
z2 +

29

25
z3 +

38

35
z4 +

997

980
z5 +

4819

5040
z6 +

5113

5670
z7 +

59141

69300
z8 + O(z9).

We can thus find the coefficient of the linear term in e
(2)
m,n as [zm−1]f(z). The relevant

formulæ, that we need are

[zn] log(1− z) = − 1

n
, [zn]log2(1− z) =

2

n
Hn−1, [zn] dilog(1− z) =

1

n2
.

Eventually we get

[zm−1]f(z) =
2

m + 2
− 5

m + 1
+

4Hm+1

m + 1
.

A similar procedure will now be applied to the sequence of the constants
[
1,

5

2
,
71

18
,
95

18
,
2927

450
,
3437

450
,
191633

22050
,
1706629

176400
,
16826581

1587600
,
18210313

1587600
, . . .

]
,

leading to the generating function

f(z) =
3 log(1− z)

z
+

4 dilog(1− z)

z
+

2 log2(1− z)

z

+
3 log(1− z)

1− z
+

4 dilog(1− z)

1− z
+

2 log2(1− z)

1− z
.
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As before we seek the coefficient of zm−1. We need additional formulæ, see [3],

[zn]
dilog(1− z)

1− z
= H(2)

n , where H(r)
m =

m∑
j=1

1

jr
,

and

[zn]
log2(1− z)

1− z
= 2

n∑
p=2

1

p
Hp−1 = H2

n −H(2)
n .

This leads to
[zm−1]f(z) = −3Hm + 2H2

m + 2H(2)
m .

Hence we found the second moment

e(2)
m,n =

2

(m + 1)(m + 2)
n2 +

[
4Hm+1

m + 1
+

2

m + 2
− 5

m + 1

]
n− 3Hm + 2H2

m + 2H(2)
m ;

the correctness of the formula was then checked subsequently by induction.

This gives us the variance vm,n = e
(2)
m,n − e2

m,n as a corollary:

vm,n =
m

(m + 1)2(m + 2)
n2 +

[
2Hm

m + 1
− m(3m + 7)

(m + 1)2(m + 2)

]
n− 3Hm + H2

m + 2H(2)
m .

Let us now discuss the third moment. We tried a similar approach as before, but
the order of the differential equations was too high, so we came up with something
different.

It is a meaningful guess to set

e(3)
m,n := amn3 + bmn2 + cmn + dm.

Plugging that into the recurrence

e(3)
m,n =

m

m + n
e
(3)
m−1,n+1 +

n

m + n
e
(3)
m,n−1 and e

(3)
0,n := n3,

we find

amn3 + bmn2 + cmn + dm =
m

m + n

[
am−1(n + 1)3 + bm−1(n + 1)2 + cm−1(n + 1) + dm−1

]

+
n

m + n

[
am(n− 1)3 + bm(n− 1)2 + cm(n− 1) + dm

]
.

We multiply this by m + n and then compare coefficients of ni, i = 0, . . . , 4:

(m + 3)am = mam−1, a0 = 1,

(m + 2)bm = 3mam−1 + mbm−1 + 3am, b0 = 0,

(m + 1)cm = 3mam−1 + 2mbm−1 + mcm−1 − am + bm, c0 = 0,

dm = am−1 + bm−1 + cm−1 + dm−1, d0 = 0.

These are all first order recursions and can be solved one after the other by iteration.
The am’s are the easiest ones:

am =
6

(m + 1)(m + 2)(m + 3)
.

Plugging that in we find the equation for the bm’s:

(m + 1)(m + 2)bm = m(m + 1)bm−1 +
18(m + 4)

(m + 2)(m + 3)
,
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and eventually

bm =
18

(m + 1)(m + 2)

(
Hm − m(7m2 + 36m + 41)

6(m + 1)(m + 2)(m + 3)

)
.

The equation for the cm’s is then

(m + 1)cm = mcm−1 +

(
54

m + 1
− 18

m + 2

)
Hm

+
54

(m + 1)2
− 93

m + 1
− 18

(m + 2)2
+

63

m + 2
− 12

m + 3
.

Iterating this we find

(m + 1)cm =
m∑

j=1

54

j + 1
Hj −

m∑
j=1

18

j + 2
Hj +

m∑
j=1

54

(j + 1)2
−

m∑
j=1

93

j + 1

−
m∑

j=1

18

(j + 2)2
+

m∑
j=1

63

j + 2
−

∑
j=1

12

j + 3
.

Using formulæ such as

m∑
j=1

1

j + 1
Hj =

1

2
H2

m −
1

2
H(2)

m +
1

m + 1
Hm

and
m∑

j=1

1

j + 2
Hj =

1

2
H2

m −
1

2
H(2)

m +
2m + 3

(m + 1)(m + 2)
Hm − m

m + 1

we get eventually

cm =
18

m + 1

(
H2

m + H(2)
m

)− 6(7m2 + 18m + 5)

(m + 1)2(m + 2)
Hm

+
m(7m4 + 42m3 + 40m2 − 150m− 227)

(m + 1)3(m + 2)2(m + 3)
.

The equation for the dm’s becomes after a few simplifications

dm = dm−1 − 42

m
Hm−1 +

36

m2
Hm−1 +

18

m
H2

m−1 +
18

m
H

(2)
m−1 +

36

m3
− 42

m2
+

7

m

and furthermore

dm = −42
m∑

j=1

1

j
Hj + 18

m∑
j=1

1

j

[
H2

j + H
(2)
j

]
+ 7Hm.

We use
m∑

j=1

1

j
Hj =

1

2

(
H2

m + H(2)
m

)
and

m∑
j=1

1

j

[
H2

j + H
(2)
j

]
=

1

3

[
H3

m + 3HmH(2)
m + 2H(3)

m

]
,
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which, once they are known, are not difficult to prove by induction. (Carsten Schnei-
der’s page Sigma [6] is helpful for such calculations.) So finally

dm = 7Hm − 21H2
m + 6H3

m − 21H(2)
m + 12H(3)

m + 18HmH(2)
m .

The third moment is therefore

e(3)
m,n =

6

(m + 1)(m + 2)(m + 3)
n3

+
18

(m + 1)(m + 2)

(
Hm − m(7m2 + 36m + 41)

6(m + 1)(m + 2)(m + 3)

)
n2

+

[
18

m + 1

(
H2

m + H(2)
m

)− 6(7m2 + 18m + 5)

(m + 1)2(m + 2)
Hm

+
m(7m4 + 42m3 + 40m2 − 150m− 227)

(m + 1)3(m + 2)2(m + 3)

]
n

+ 7Hm − 21H2
m + 6H3

m − 21H(2)
m + 12H(3)

m + 18HmH(2)
m .

3. The large pill equals p small pills

We shall now look at a variation of the previous problem. Suppose that we have m
large pills and n small pills, but this time a large pill is equivalent to p small pills. If a
large pill is chosen, it is broken into p parts, one part is swallowed and the other p− 1
parts are returned to the bottle. If a small pill is chosen it is simply swallowed. The
question is again the average number of small pills when the last large pill has been
chosen.

Let us start with the instance p = 3. The recurrence relation for this average given
that we start with m resp. n pills, is

em,n =
m

m + n
em−1,n+2 +

n

m + n
em,n−1 for m ≥ 1, and e0,n = n.

One quickly finds that em,n = amn+ bm. The first few values of am for m ≥ 1 are given
by

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,

1

10
,

1

11
,

whence am = 1/(m + 1); the bm’s are a bit more complicated:

2, 3,
11

3
,
25

6
,
137

30
,
49

10
,
363

70
,
761

140
,
7129

1260
,
7381

1260
.

However, with the help of Gfun, we have no trouble to find the formula

em,n =
n

m + 1
+ 2Hm.

Now we turn to the general case, with the recursion

em,n =
m

m + n
em−1,n+p−1 +

n

m + n
em,n−1.

Working out a few cases, one sees the formula

em,n =
n

m + 1
+ (p− 1)Hm,
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which subsequently can be proved by induction. We leave such a proof to the interested
reader.

4. Three types of pills

Let us now look at a similar pill problem as before, but this time it involves three
types of pills. In a bottle there are m large pills, n medium pills and p small pills. The
large pill is equivalent to three small pills, the medium pill to two small pills.

The simple model. A pill is chosen at random and if it is a large pill, it is broken into
three parts, one part is swallowed and the remaining two parts which are equivalent
to two small pills are returned to the bottle. If the chosen pill is a medium pill, it is
broken into two parts, one part is swallowed and the remaining part which is equivalent
to one small pill is returned to the bottle.

We ask ourselves three questions: What is the expected number of small pills left
over when

i) there are no more large pills,
ii) there are no more medium pills,
iii) there are no more large pills and no more medium pills?

The recursion

em,n,p :=
m

m + n + p
em−1,n,p+2 +

n

m + n + p
em,n−1,p+1 +

p

m + n + p
em,n,p−1

is the same for all three instances, only the initial conditions and the range of its
validity differ.

In the case i) it holds for m ≥ 1, n, p ≥ 0, and e0,n,p = p.
In the case ii) it holds for n ≥ 1, m, p ≥ 0, and em,0,p = p.
In the case iii) it holds for m,n, p ≥ 0, (m,n) 6= (0, 0) and e0,0,p = p.
Let us start with case i). We proceed as before and calculate em,n,p for m = 1, 2, . . . ,

with the results

e1,n,p =
p

2
+

n

4
+ 2,

e2,n,p =
p

3
+

5n

18
+ 3,

e3,n,p =
p

4
+

13n

48
+

11

3
,

e4,n,p =
p

5
+

77n

300
+

25

6
,

e5,n,p =
p

6
+

29n

120
+

137

30
.

It is not too hard to guess that em,n,p = p
m+1

+ amn + 2Hm, and we will find the
sequence am by plugging that into the recursion

em,n,p =
m

m + n + p
em−1,n,p+2 +

n

m + n + p
em,n−1,p+1 +

p

m + n + p
em,n,p−1.

From this we find eventually that

(m + 1)am = mam−1 +
1

m + 1
.
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The solution is again found by iteration:

am =
Hm+1 − 1

m + 1
.

So our final result for the expected number of small pills left over when there are no
more large pills is

em,n,p =
p

m + 1
+

Hm+1 − 1

m + 1
n + 2Hm.

In the case ii) the computations are very similar and the result is

em,n,p =
p

n + 1
+

2(Hn+1 − 1)

n + 1
m + Hn.

The case iii) is a bit more involved. First we note that e0,n,p = p
n+1

+ Hn, which is
just the original pill problem.

We do a few more computations:

e1,n,p =
p

n + 2
+

n + 2

n + 1
Hn+1,

e2,n,p =
p

n + 3
+

n + 4

n + 2
Hn+2,

e3,n,p =
p

n + 4
+

n + 6

n + 3
Hn+3,

from which the general formula can be seen:

em,n,p =
p

m + n + 1
+

2m + n

m + n
Hm+n;

for m = n = 0, it must be interpreted as e0,0,p = p.

The difficult model. We still have the three types of pills, the large, the medium,
and the small. The way in which they are broken up and swallowed is different. This
time, if a large pill is chosen, it is broken into two parts in the ratio 1 : 2, the small
part which is equivalent to a small pill is swallowed and the remaining part which is
equivalent to a medium pill is returned to the bottle. However if a medium pill is
chosen it is broken into two equal parts, both equivalent to a small pill, one part is
swallowed and the other part is returned as a small pill into the bottle. If a small pill
is chosen it is simply swallowed.

We look again at the expected number of small pills left over but this time only for
two cases, since the third case makes no sense in this setting:

i) when there are no more large pills,
ii) when there are no large pills and no medium pills left.

We start with case i). The recursion is

em,n,p :=
m

m + n + p
em−1,n+1,p +

n

m + n + p
em,n−1,p+1 +

p

m + n + p
em,n,p−1,

for m ≥ 1 and the initial conditions e0,n,p = p.
Again, working out a few cases for m = 1, 2, . . . , one arrives at

em,n,p =
p

m + 1
+

Hm+1 − 1

m + 1
n + am,
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and we will determine am by plugging that into the recursion, which leads to

mam = mam−1 + Hm − 1 and a0 = 0.

This has the solution (again by iteration)

am =
m∑

i=1

(
Hi

i
− 1

i

)
=

H2
m + H

(2)
m

2
−Hm.

Hence our final answer is

em,n,p =
p

m + 1
+

Hm+1 − 1

m + 1
n +

H2
m + H

(2)
m

2
−Hm.

Now we turn to the second case, counting the number of small pills remaining when
the other ones have disappeared. In this case the recursion holds for all (m,n) 6= (0, 0),
and e0,0,p = p. It turns out that

em,n,p = λm,np + µm,n.

Using that in the recursion, one finds

(m + n + 1)λm,n = mλm−1,n+1 + nλm,n−1 for m ≥ 1 and λ0,n =
1

n + 1
.

Multiplying that with (m + n)m := (m + n) . . . (n + 1) we get

(m + n + 1)m+1 λm,n = (m + n)m+1 λm,n−1 + m(m + n)m λm−1,n+1.

Iterating this we find, noticing that λm,0 = m
m+1

λm−1,1,

λm,n =
m

(m + n + 1)m+1

n+1∑

k=1

(k + m− 1)m λm−1,k.

The recursion looks nicer in terms of Λm,n := (m + n)m+1λm,n:

Λm,n =
mn

m + n + 1

n+1∑

k=1

Λm−1,k.

One could now iterate this with respect to m and thus write Λm,n as an m-fold iterated
sum.

Let us compute the first three λm,n’s:
For m = 1 we get

λ1,n =
1

(n + 2)(n + 1)

n+1∑

k=1

kλ0,k

=
1

(n + 2)(n + 1)

[
n + 2−Hn+2

]
=

1

n + 1
− Hn+2

(n + 2)(n + 1)
.

For m = 2 we obtain

λ2,n =
2

(n + 1)(n + 2)(n + 3)

n+1∑

k=1

(
k − k

k + 2
Hk+2

)

=
1

n + 1
− 2(n + 4)Hn+3

(n + 1)(n + 2)(n + 3)
+

2
[
H2

n+3 + H
(2)
n+3

]

(n + 1)(n + 2)(n + 3)
.
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For m = 3 we have

λ3,n =
1

n + 1
+

3
[
(2n + 13)(H2

n+4 + H
(2)
n+4)− (n + 4)(n + 5)Hn+4 − 2H3

n+4 − 6Hn+4H
(2)
n+4 − 4H

(3)
n+4

]

(n + 1)(n + 2)(n + 3)(n + 4)
.

The results look rather cumbersome, so we stop here for the λ’s.

Now for the µ’s, if we use em,n,p = λm,np + µm,n, in the recursion, we find

(m + n)µm,n = nµm,n−1 + mµm−1,n+1 + nλm,n−1 for n ≥ 1 and µ0,n = Hn.

Multiplying that with
(m + n− 1)!

n!
we get

(m + n)!

n!
µm,n =

(m + n− 1)!

(n− 1)!
µm,n−1 +

m(m + n− 1)!

n!
µm−1,n+1 +

(m + n− 1)!

(n− 1)!
λm,n−1.

Iterating this and noticing that µm,0 = µm−1,1, we obtain

µm,n =
n!

(m + n)!

[
n∑

i=0

m(m + i− 1)!

i!
µm−1,i+1 +

n∑
i=1

(m + i− 1)!

(i− 1)!
λm,i−1

]
.

Let us compute the first two values of µm,n.
For m = 1 we have

µ1,n =
1

n + 1

[
(n + 2)Hn+1 −

H2
n+1 + H

(2)
n+1

2

]
.

For m = 2 we have

µ2,n =
(n + 2)(n + 3)Hn+2 − (n + 5)(H2

n+2 + H
(2)
n+2) + H3

n+2 + 3Hn+2H
(2)
n+2 + 2H

(3)
n+2

(n + 1)(n + 2)
.

Again the results are not attractive so we stop here.
Table 1 shows a few values of em,n,p for that instance.
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