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1. Introduction

Ekhad and Zeilberger [5] have unearthed Lehmer’s [8] tridiagonal n×nmatrixM = M(n)
with entries

Mi,j =


1 if i = j,

z1/2q(i−1)/2 if i = j − 1,

z1/2q(i−2)/2 if i = j + 1,

0 otherwise.

Lehmer [8] has computed the limit for n → ∞ of the determinant of the matrix M(n).
Ekhad and Zeilberger [5] have generalized this result by computing the determinant of the
finite matrix M(n). Furthermore, a lively account of how modern computer algebra leads
to a solution was given. Most prominently, the celebrated q-Zeilberger algorithm [10] and
creative guessing were used.

In this note, the determinant in question is obtained by computing the LU-decomposition
LU = M . This is done with a computer, and the exact form of L and U is obtained by
guessing. A proof that this is indeed the LU-decomposition is then a routine calculation.
From it, the determinant in question is computed by multiplying the diagonal elements of
the matrix U . By telescoping, the final result is then quite attractive, as already stated
and proved by Ekhad and Zeilberger [5].

We hope that this little contribution will be a welcome addition to the rekindled interest
in Lehmer’s tridiagonal determinant.

We use standard notation [1]: (x; q)n = (1−x)(1−xq) . . . (1−xqn−1), and the Gaussian

q-binomial coefficients
[
n
k

]
= (q;q)n

(q;q)k(q;q)n−k

2. The LU-decomposition of M

Let

λ(j) :=
∑

0≤k≤j/2

[
j − k
k

]
(−1)kqk(k−1)zk.

It follows from the basic recursion of the Gaussian q-binomial coefficients [1] that

λ(j) = λ(j − 1)− zqj−2λ(j − 2). (1)
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Then we have

Uj,j =
λ(j)

λ(j − 1)
, Uj,j+1 = z1/2q(j−1)/2,

and all other entries in the U -matrix are zero. Further,

Lj,j = 1, Lj+1,j = z1/2q(j−1)/2
λ(j − 1)

λ(j)
,

and all other entries in the L-matrix are zero.
The typical element of the product (LU)i,j, that is∑

1≤k≤n

Li,kUk,j

is almost always zero; the exceptions are as follows: If i = j, then we get

Lj,jUj,j + Lj,j−1Uj−1,j =
λ(j) + zqj−2λ(j − 2)

λ(j − 1)
= 1,

because of the above recursion (1). If i = j − 1, then we get

Lj−1,j−1Uj−1,j + Lj−1,j−2Uj−2,j = z1/2q(j−2)/2,

and if i = j + 1, then we get

Lj+1,j+1Uj+1,j + Lj+1,jUj,j = z1/2q(j−1)/2
λ(j − 1)

λ(j)

λ(j)

λ(j − 1)
= z1/2q(j−1)/2.

This proves that indeed LU = M . Therefore for the determinant of the Lehmer matrix M
we obtain the expression

n∏
j=1

λ(j)

λ(j − 1)
=
λ(n)

λ(0)
=

∑
0≤k≤n/2

[
n− k
k

]
(−1)kqk(k−1)zk.

This is the result posted on August 21, 20181 by Ekhad and Zeilberger [5]. Of course,
taking the limit n → ∞, leads to the old result by Lehmer for the determinant of the
infinite matrix:

lim
n→∞

det(M(n)) =
∑
k≥0

(−1)kqk(k−1)zk

(q; q)k
.

Remarks.
1. For q = 1, Lehmer’s determinant plays a role when enumerating lattice paths (Dyck

paths) of bounded height, or planar trees of bounded height, see [4, 7, 6].
2. Recursions as in (1) have been studied in [2, 3, 9] and are linked to so-called Schur

polynomials [11].
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